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The work presented here was motivated by the need to develop a predictive model for

thermodynamic stabilization of binary alloys that is applicable to strongly segregating size-misfit

solutes, and that can use available input data for a wide range of solvent-solute combinations. This

will serve as a benchmark for selecting solutes and assessing the possible contribution of

thermodynamic stabilization for development of high-temperature nanocrystalline alloys.

Following a regular solution model that distinguishes the grain boundary and grain interior volume

fractions by a transitional interface in a closed system, we include both the chemical and elastic

strain energy contributions to the mixing enthalpy DHmix using an appropriately scaled linear

superposition. The total Gibbs mixing free energy DGmix is minimized with respect to simultaneous

variations in the grain-boundary volume fraction and the solute contents in the grain boundary and

grain interior. The Lagrange multiplier method was used to obtain numerical solutions with the

constraint of fixed total solute content. The model predictions are presented using a parametric

variation of the required input parameters. Applications are then given for the dependence of the

nanocrystalline grain size on temperature and total solute content for selected binary

systems where experimental results suggest that thermodynamic stabilization could be effective.
VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4791704]

I. INTRODUCTION

Grain boundaries in nanocrystalline microstructures pro-

duce a significant increase in the total free energy of the sys-

tem. The presence of a large driving force for grain growth

due to a decrease in grain boundary content can therefore be

expected.1 Kinetic stabilization and thermodynamic stabili-

zation are the two basic mechanisms by which stability of a

nanoscale grain size can be retained at high temperatures in

alloys. Kinetic stabilization is achieved by reducing the mo-

bility of grain boundaries by solute drag, second-phase parti-

cle pinning (Zener pining), or other mechanisms such as

porosity drag. The kinetic mechanisms involve thermally

activated processes and therefore grain growth will occur as

a function of both time and temperature. Thermodynamic

stabilization involves a metastable equilibrium state, and

alloy mixing entropy DSmix will produce a temperature de-

pendent grain size. Weissmuller2,3 developed the concept of

thermodynamic stabilization using the Gibbs absorption

equation. This leads to relations of the form

c ¼ dG

dA
¼ c0 þ Cs½DHseg � TDSseg�: (1)

c0 is the initial non-segregated grain boundary energy, Cs is

the solute excess at the interface, DHseg is the segregation en-

thalpy, and DSseg is the segregation entropy. c is defined to

be the change in free energy dG with respect to variation in

grain boundary area dA in a closed system. This equation is

often used to define thermodynamic stabilization as the con-

dition where c is lowered to be zero. If c is assumed to be the

cohesive grain boundary energy, grain boundary cohesion is

lost and grains would separate at the stabilization point

(c¼ 0). Based on zero creep measurements, cohesive grain

boundary energy varies with the increasing global solute

content and grain boundary energy reaches a non-zero limit.4

The definition of grain boundary energy from Eq. (1) is re-

stricted to a dilute solution containing a negligible volume

fraction of interface. In a nanocrystalline microstructure, the

volume fraction of grain boundary will be significant and

there is no restriction on the bulk solute concentration. The

model considered in this paper does not follow the criterion

for thermodynamic stabilization based on Eq. (1).

Numerous experimental studies have shown that solute

addition stabilizes a nanoscale grain size at higher tempera-

tures; however in most investigations, there is no direct evi-

dence to reveal which mechanisms are effective.5–13

Analytical models have been proposed to deal with the phe-

nomenon of interface segregation. McLean14 assumed that

the enthalpy of segregation (DHseg) was the complete release

of the elastic strain energy associated with the solute atomic

size misfit, i.e., DHseg¼�DEels. The elastic mistfit strain

energy (DEels) per solute atom A for an AB alloy containing

No atoms is obtained using a model due to Friedel15

DEels ¼
2KAGBðVA � VBÞ2

3KAVB þ 4GBVA
: (2)

KA is the bulk solute modulus, GB is the solvent shear modu-

lus, and VA and VB are the atomic volumes of pure solute and

solvent, respectively. Defay et al.16 expressed the segrega-

tion enthalpy in terms of chemical contributions using a reg-

ular solution model, i.e., DHseg¼DHchem. It was pointed out

that neither the McLean14 nor the Defay et al.16 models
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provide correct predictions of the grain boundary segregation

in a binary alloy.17 The reason is that the model due to Defay

et al.16 considers only the chemical contributions to the seg-

regation enthalpy, whereas McLean14 excludes all but the

elastic contributions. Wynblatt and Ku (WK)18,19 recognized

these limitations and proposed a model in which the chemi-

cal and elastic contributions to the segregation enthalpy are

combined linearly

DHseg ¼ DHchem þ DHels: (3)

Trelewicz and Schuh (TS)20 developed a regular solution

model for thermodynamic stabilization of nanocrystalline

alloys. They distinguished the grain boundary region from

the grain interior region by a transitional interface and

applied the regular solution approximation for each region.

The equilibrium condition is obtained by minimization of

the total Gibbs mixing free energy with respect to simultane-

ous variations in the grain boundary composition and the

grain boundary volume fraction. This approach provides a

more rigorous analytical modeling framework for evaluating

nanoscale grain size stability. Analogous to the Defay

et al.16 model, the TS model does not also take the elastic

part of the enthalpy into account. The elastic term always

contributes to grain-boundary segregation whereas the chem-

ical term may contribute or detract. Therefore, addition of

elastic strain energy to the enthalpy change is essential for

strongly segregating alloys systems involving large size mis-

fit (non-equilibrium) solute additions. Recently, Chookajorn

et al.21 have suggested a modification incorporating the elas-

tic strain energy into the total enthalpy of segregation

(DHseg). However, the enthalpy of segregation (as a deriva-

tive of the enthalpy of mixing (DHmix) with respect to the

atomic fraction of solute at grain boundary) was not properly

scaled by the volume fraction of the grain boundary region.

Objectives of this work are to include the elastic term into a

regular solution model and to minimize the Gibbs free

energy with respect to all the variables simultaneously con-

tributing to the segregation and grain growth. This approach

offers a rational solution for the equilibrium condition for a

nanocrystalline system. The cohesive grain boundary energy

never becomes zero. A numerical solution method is pre-

sented based on the Lagrange multiplier technique. This is

readily implemented using standard software packages.

II. ANALYTICAL TREATMENT

A regular solution model for the chemical contribution

is developed as a sum of the atomic bond energies for differ-

ent regions. The components of the model are described next

in terms of mixing energy changes.

A. Internal energy of mixing

Following the TS approach using similar notation, the vol-

ume of the system is divided into bulk (grain interior) and inter-

granular (grain boundary) regions connected by transitional

bonds as illustrated in Figure 1. An atomic bond interaction

energy for each region can be defined using the regular solution

model. The total internal energy of the system is obtained by

adding the bond energies for the different regions. Assuming a

binary mixture of solute A and solvent B atoms gives

Usoln: ¼ NAA
b EAA þ NBB

b EBB þ NAB
b EAB

þ aðNAA
t EAA þ NBB

t EBB þ NAB
t EABÞ

þ aðNAA
ig EAA þ NBB

ig EBB þ NAB
ig EABÞ : (4)

Nk
ij is the number of bonds in each region and Eij is the bond

energy where the superscripts (ij) distinguish the bond type

in terms of like or unlike pairs of A and B, and the subscript

(k) denotes the bulk (b), transitional (t), and intergranular

(ig) regions. The a multiplier is introduced to distinguish the

bond energy in the intergranular and transitional regions

from the bulk region. The aEij terms are the equivalent of Eig

in the TS model.

The internal energy of mixing arises from the difference

between internal energy of the solution and a reference state

DUmix ¼ Usoln � Uref : (5)

The reference state is defined as an unmixed and interface-

free state of the system with the same AB composition. The

regular solution model for the reference state gives

Uref ¼
z

2
NA

total EAA þ z

2
NB

total EBB: (6)

Ntotal
A and Ntotal

B are the total numbers of pure solute and sol-

vent atoms in the system, respectively, and z is the coordina-

tion number of the solvent atom. In a system with a given

AB composition, the total number of A and B atoms is related

to the number of bonds by

zNA
total ¼ 2NAA

b þ 2NAA
t þ 2NAA

ig þ NAB
b þ NAB

t þ NAB
ig

zNB
total ¼ 2NBB

b þ 2NBB
t þ 2NBB

ig þ NAB
b þ NAB

t þ NAB
ig : (7)

The substitution of Ntotal
A and Ntotal

B from Eq. (7) into Eq. (6)

followed by the substitution of Eq. (6) into Eq. (5) leads to

FIG. 1. The schematic of separated bonding regions of a system of two

grains and a boundary with thickness t.
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DUmix ¼ NAB
b EAB � EAA þ EBB

2

� �

þðNAB
t þ NAB

ig Þ aEAB � EAA þ EBB

2

� �

þða� 1Þ
�
ðNAA

t þ NAA
ig ÞEAA þ ðNBB

t þ NBB
ig ÞEBB

�
:

(8)

DUmix can be rearranged to give

DUmix ¼NAB
b EAB�EAAþEBB

2

� �

þaðNAB
t þNAB

ig Þ EAB�EAAþEBB

2

� �

þða� 1Þ NAA
t EAAþNBB

t EBBþNAB
t

EAAþEBB

2

� �� �

þða� 1Þ NAA
ig EAAþNBB

ig EBBþNAB
ig

EAAþEBB

2

� �� �
:

(9)

The regular solution interaction energy parameter x is

defined as

x¼ EAB � EAA � EBB

2

� �
: (10)

Therefore,

DUmix ¼xNAB
b

þaxðNAB
t þNAB

ig Þ

þða� 1Þ NAA
t EAAþNBB

t EBBþNAB
t

EAAþEBB

2

� �� �

þða� 1Þ NAA
ig EAAþNBB

ig EBBþNAB
ig

EAAþEBB

2

� �� �
:

(11)

In a three-dimensional polycrystal with grain size d, grain-

boundary thickness t and a grain-shape factor proportional to

d, the intergranular volume fraction fig of the grain boundary

region can be given as22

fig ¼ 1� d � t

d

� �3

: (12)

Mass conservation for the solute contents (atom fractions)

Xig, Xb, and X0 in the intergranular region, bulk region, and

total system, respectively, requires the constraint condition

Xbð1� figÞ þ Xigfig ¼ X0: (13)

The total number of bonds Nb
ij in the bulk region can be

expressed as a function of fig, the total number of atoms N0

in the system, and the coordination number z

Nij
b ¼

z

2
N0ð1� figÞ: (14a)

The factor v is defined as the effective bond coordination

contributing to the transitional bonding region in Figure 1.

Therefore, the total number of transitional bonds Nt
ij is

Nij
t ¼ vzN0fig: (14b)

Since N0¼ 2Nb
ijþ 2Nt

ijþ 2Nig
ij, the total number of intergra-

nular bonds Nig
ij is obtained as

Nij
ig ¼
ð1� 2vÞz

2
N0fig: (14c)

The existence probabilities Pk
ij for bonds can be given in

terms of solute contents in the respective regions as follows:

PAB
b ¼ 2Xbð1� XbÞ; (15a)

PAA
t ¼ XbXig; (15b)

PBB
t ¼ ð1� XbÞð1� XigÞ; (15c)

PAB
t ¼ Xbð1� XigÞ þ Xigð1� XbÞ; (15d)

PAA
ig ¼ X2

ig; (15e)

PBB
ig ¼ ð1� XigÞ2; (15f)

PAB
ig ¼ 2Xigð1� XigÞ: (15g)

The number of bonds for like and/or unlike pairs can be cal-

culated from the total number of bonds multiplied by the ex-

istence probability in each of the respective regions

NAB
b ¼ PAB

b � Nij
b ¼ zN0Xbð1� XbÞð1� figÞ; (16a)

NAA
t ¼ PAA

t � Nij
t ¼ vzN0XbXigfig; (16b)

NBB
t ¼ PBB

t � Nij
t ¼ vzN0ð1� XbÞð1� XigÞfig; (16c)

NAB
t ¼PAB

t �Nij
t ¼ vzN0

�
Xbð1�XigÞþXigð1�XbÞ

�
fig; (16d)

NAA
ig ¼ PAA

ig � Nij
ig ¼
ð1� 2vÞz

2
N0X2

igfig; (16e)

NBB
ig ¼ PBB

ig � Nij
ig ¼
ð1� 2vÞz

2
N0ð1� XigÞ

2fig; (16f)

NAB
ig ¼ PAB

ig � Nij
ig ¼ ð1� 2vÞzN0Xigð1� XigÞ fig: (16g)

Substituting these into Eq. (11) gives DUmix per atom

DUmix

N0

¼xzXbð1�XbÞð1�figÞ

þaxvz
�

Xbð1�XigÞþXigð1�XbÞ
�

fig

þ ða�1Þvz

2

�
ðXbþXigÞEAAþð1�Xbþ1�XigÞEBB

�
fig

þaxð1�2vÞzXigð1�XigÞfig

þ ða�1Þð1�2vÞz
2

ðXigEAAþð1�XigÞEBBÞfig:

(17)
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If the (a� 1)zEij terms are rearranged as follows:

ða� 1Þz
2

EAA ¼ az

2
EAA � z

2
EAA; (18a)

ða� 1Þz
2

EBB ¼ az

2
EBB � z

2
EBB; (18b)

they can be interpreted as differences in the energies between

intergranular and bulk bonds. These can be related to the co-

hesive grain boundary energies of pure elements of A and B

ða� 1Þz
2

EAA ¼ rcA; (19a)

ða� 1Þz
2

EBB ¼ rcB: (19b)

r is defined as the molar grain boundary area, which is taken

to be

r ¼ NAvgðVBÞ
2
3: (20)

NAvg is Avogadro’s number and VB is the atomic volume of

the solvent atom. DUmix can then be reduced to

DUmix

N0

¼xzXbð1�XbÞð1� figÞ

þaxvz
�

Xbð1�XigÞþXigð1�XbÞ
�

fig

þvr
�
ðXbþXigÞcAþð1�Xbþ1�XigÞcB

�
fig

þaxð1�2vÞzXigð1�XigÞfig
þð1�2vÞr

�
Xigc

Aþð1�XigÞcB
�

fig: (21)

B. Enthalpy of mixing

If the volume change caused by mixing is neglected, the

enthalpy change is equivalent to the internal energy change

at fixed temperature and pressure

DH ¼ DU þ PDV ¼ DU: (22)

DUmix in Eq. (21) corresponds to the chemical energy

change. An elastic internal energy change (DUels) due to sol-

ute atom size misfit must be added to DUmix to get the total

enthalpy of mixing

DHmix

N0

¼ DUmix

N0

þ DUels

N0

: (23)

It is assumed that when a solute atom segregates to a grain

boundary, the total elastic strain energy is released. There-

fore, the elastic internal energy change per atom for intro-

ducing an atom fraction Xig of misfit solute atoms into the

grain boundary region is obtained by an elastic strain energy

term (DHels) which must be scaled by Xig and fig

DUels

N0

¼ XigDHelsfig: (24)

DHels¼�DEels will be obtained from Eq. (2).

The total enthalpy of mixing is obtained by combining

Eqs. (21) and (24) via Eq. (23)

DHmix

N0

¼xzXbð1�XbÞð1� figÞ

þaxvzðXbð1�XigÞþXigð1�XbÞÞfig

þvr
�
ðXbþXigÞcAþð1�Xbþ1�XigÞcB

�
fig

þaxð1�2vÞzXigð1�XigÞfig
þð1�2vÞrðXigc

Aþð1�XigÞcBÞfig

þXigDHelsfig: (25)

C. Free energy of mixing

The entropy change due to mixing will be approximated

by the ideal AB solid solution entropy, i.e., no excess entropy

terms are included

DSmix

N0

¼�R½XblnðXbÞþð1�XbÞlnð1�XbÞ�ð1� figÞ

�R½XiglnðXigÞþð1�XigÞlnð1�XigÞ�fig: (26)

The Gibbs free energy of mixing is

DGmix

N0

¼ DHmix

N0

� TDSmix

N0

: (27)

Substituting Eqs. (25) and (26) into Eq. (27) gives the final result

DGmix

N0

¼ xzXbð1� XbÞð1� figÞ

þ axvz
�

Xbð1� XigÞ þ Xigð1� XbÞ
�

fig

þ vr
�
ðXb þ XigÞcA þ ð1� Xb þ 1� XigÞcB

�
fig

þ axð1� 2vÞzXigð1� XigÞfig
þð1� 2vÞrðXigc

A þ ð1� XigÞcBÞfig
þXigDHelsfig

þRT½XblnðXbÞþ ð1 � XbÞ lnð1� XbÞ�ð1� figÞ
þRT½XiglnðXigÞþ ð1 � XigÞlnð1 � XigÞ�fig:

(28)

The parameters x, a, v, z, r, DHels, cA, cB, R, and T will be

specified for a given AB alloy. DGmix in Eq. (28) is then a

function of the three variables Xb, Xig, and fig.

D. Equilibrium condition

The equilibrium state is obtained by simultaneous mini-

mization of DGmix with respect to Xb, Xig, and fig

1

N0

@DGmix

@Xb
¼ 0; (29a)

1

N0

@DGmix

@Xig
¼ 0; (29b)

1

N0

@DGmix

@fig
¼ 0; (29c)
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subject to the constraint condition,

Xbð1� figÞ þ Xigfig � X0 ¼ 0: (30)

It should be emphasized that a thermodynamic stabiliza-

tion requires the full solution to Eqs. (29a)–(29c) and (30).

Numerical solutions are obtained here using the

Lagrange multiplier technique. The Lagrangian L is defined

as

L ¼ DGmix

N0

� kðXbð1� figÞ þ Xigfig � X0Þ: (31)

k is the Lagrangian multiplier. Recognizing that Xb, Xig, fig,

and k are treated as independent variables for L, the minimi-

zation equations are given by

@L

@Xb
¼ xzð1� 2XbÞð1� figÞ þ axvzð1� 2XigÞfig

þ vrðcA � cBÞfig

þRT½lnðXbÞ � lnð1� XbÞ�ð1� figÞ � kð1� figÞ ¼ 0;

(32a)

@L

@Xig
¼ axvzð1� 2XbÞfig þ vrðcA � cBÞfig

þ axð1� 2vÞzð1� 2XigÞfig

þð1� 2vÞrðcA � cBÞfig þ DHelsfig

þRT½lnðXigÞ � lnð1� XigÞ�fig � kfig ¼ 0; (32b)

@L

@fig
¼ �xzXbð1� XbÞ

þ axvzðXbð1� XigÞ þ Xigð1� XbÞÞ

þ vr
�
ðXb þ XigÞcA þ ð1� Xb þ 1� XigÞcB

�

þ axð1� 2vÞzXigð1� XigÞ
þ ð1� 2vÞrðXigc

A þ ð1� XigÞcBÞ þ XigDHels

�RT½Xb lnðXbÞþ ð1 � XbÞlnð1 � XbÞ�
þRT½Xig lnðXigÞþð1� XigÞlnð1� XigÞ�
� kðXig � XbÞ ¼ 0; (32c)

@L

@k
¼ Xbð1� figÞ þ Xigfig � X0 ¼ 0: (32d)

The solutions for Xb, Xig, and fig can be readily obtained

from Eqs. (32a)–(32d) using standard numerical methods.

An example is given in the Appendix using the MAPLE

software.37 The solution for fig determines the equilibrium

grain size from Eq. (12). The solutions for Xb and Xig

determine the equilibrium interfacial solute excess

from23,24

C ¼ðXig � XbÞ
rð1� XbÞ

: (33)

III. PARAMETRIC STUDY

Numerical solutions obtained using Eqs. (32a)–(32d) will

be presented in this section as a function of the key input pa-

rameters x, DHels, X0, and a. The aim is to show the effect of

variation in one parameter while holding the others constant.

The fixed (nonvarying) input parameters will be t¼ 0.4 nm,

v¼ 1/2, z¼ 8, cA¼ cB¼ 0.6 J/m2, and r¼ 30000 m2/mol, The

default values for the variable input parameters will be

X0¼ 0.06, x¼�12 kJ/mol, a¼ 5/6, and DHels ¼�110 kJ/

mol. Each of these will be held constant at these values except

for the parameter that is currently being varied. The dimen-

sion of J/mol is used instead of J/atom which means that Eqs.

(32a)–(32d) have been multiplied by Avogadro’s number.

A. Interaction energy x

The x parameter relates to the atomic bond energies

between like and/or unlike pairs of the solute and solvent

atoms. The arrows in Figure 2 indicate an increasing (more

positive) trend for x. The segregation tendency increases with

more positive x because AB pairs are less favorable than AA
or BB pairs. A nanoscale grain size is therefore stabilized up

to higher temperatures in Figure 2(a). As can be anticipated,

Figure 2(b) illustrates that at a given temperature the solute

excess at the grain boundary is increased with more positive

FIG. 2. The effect of interaction energy x on (a) grain size and (b) interfacial solute excess.
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x. The trend for decreasing solute excess with increasing tem-

perature will always result due to the entropy effect.

B. Elastic strain energy DHels

The parameter DHels is the (negative) elastic strain

energy decrease due to segregation of size misfit solute

atoms, and its magnitude is always a driving force for sol-

ute segregation. The arrows in Figure 3 indicate a decreas-

ing trend in the magnitude for DHels. Figure 3(a) shows

that the nanoscale grain size is less stable at higher tem-

peratures when the magnitude decreases. As indicated in

Figure 3(b), the interfacial solute excess at a given temper-

ature is also decreased when the magnitude decreases.

These effects can be anticipated because the decreasing

trend for DHels implies a weaker segregation tendency for

solute atoms.

C. Global solute content X0

An increase in the global solute content Xo provides

additional solute for segregation to grain boundaries. The

arrows in Figure 4 indicate an increasing trend for Xo.

With the segregation driving forces (other parameters) held

constant, Figure 4(a) shows that a nanoscale grain size is

more stable at higher temperatures for increasing Xo. Fig-

ure 4(b) shows that the interfacial solute excess at a given

temperature is essentially independent of changes in Xo.

This behavior is similar to the classical Langmuir-Mclean

(or Fowler-Guggenheim) segregation isotherms in which C
is unaffected by global solute additions.

D. Interaction energy multiplier a

The interaction energy multiplier a plays a role similar

to that of the interaction energy parameter x in Figure 2.

FIG. 3. The effect of elastic enthalpy DHels on (a) grain size and (b) interfacial solute excess.

FIG. 4. The effect of global solute content Xo on (a) grain size and (b) interfacial solute excess.
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The arrows in Figure 5 indicate an increasing (more positive)

trend for a. Figure 5(a) shows that when bond energies in the

intergranular region approach their counterparts in the bulk

region, i.e., a ! 1, a nanoscale grain size is more stable at

higher temperatures. The effect implies that segregation

tendency is enhanced. Figure 5(b) shows that the interfacial

solute excess at a given temperature increases somewhat as

a ! 1, but the effect is not as strong as that in seen

Figure 2(b).

IV. RESULTS FOR SELECTED BINARY ALLOYS

In this section, numerical results are presented for sev-

eral binary alloys that have been investigated in the litera-

ture. Thermodynamic stabilization has been suggested as a

possible grain-size stabilization mechanism. The values

t¼ 0.4 nm, v¼ 1/2, and a¼ 5/6 are used for all the alloys.

The grain boundary energy is assumed to be 1/3 of the free

surface energy,25 and the values for cA and cB are calculated

from the free surface energy of pure elements (since surface

energy corresponds to a 1/2 broken bond, the grain boundary

energy corresponds to a 1/6 broken bond and this sets a¼ 5/6).

The elastic strain energy DHels and the molar grain boundary

area r are obtained using Eq. (2) (noting that DHels¼�DEels)

and Eq. (20), respectively. In the regular solution approxima-

tion for a binary alloy, the interaction energy parameter x is

related to the (chemical) mixing enthalpy DHmix by

DHmix ¼ zxXð1� XÞ: (34)

Therefore, x can be estimated using the relation

x ¼ 4

z
DH0

mix: (35)

DH0
mix is the enthalpy of mixing for an equimolar (X¼ 1/2)

liquid solution of AþB. Values of the required parameters

for the (solvent-solute) alloy systems Fe-Zr, Cu-Nb, Cu-Zr,

and Ni-W were obtained using data available in the

literature,26–28 and these are given in Table I. An extensive

database of DH0
mix and DEels values for a wide range of sol-

utes in a specified solvent is available in Ref. 29.

The numerical results for the Fe-Zr system are shown in

Figure 6. Zr is a very large non-equilibrium solute in Fe, and

the experimental Fe-Zr nanocrystalline alloys must be syn-

thesized using non-equilibrium processing methods such as

ball milling. The minimum Zr content that retains the grain

size in the nanoscale range at 900 �C in Figure 6(a) is 4 at. %

Zr. The predicted grain size for Fe-4 at. % Zr annealed at

900 �C is about 100 nm. This compares to the measured

TEM grain size for Fe-4 at. % Zr at 900 �C reported by Dar-

ling et al.,13 which was about 60 nm. At lower amounts of Zr

additions, the thermodynamic grain stabilization is less

effective, and the stabilization observed in Ref. 13 in the

temperature range up to about 700 �C must be due to contri-

butions from kinetic mechanisms such as solute pining and/

or solute drag. Figure 6(b) shows that the solute excess is

essentially the same for all Zr contents, similar to the trend

seen in Figure 4(b). Based on the solute excess values, the

grain boundary atom fraction of solute Xig for the tempera-

ture range in Figure 4(b) is about 0.96 for all alloys, and is

therefore close to fully saturated grain boundaries. This same

trend was observed for the other alloys in Table I, and Xig

ranges from about 0.85 to 0.95.

The numerical results for the Cu-Zr system are shown in

Figure 7. Zr is again a large non-equilibrium solute, although

FIG. 5. The effect of the a multiplier on (a) grain size and (b) interfacial solute excess.

TABLE I. Values of the required parameters for the Fe-Zr, Cu-Zr, Cu-Nb,

and Ni-W alloys (A¼ solute).

Value Fe-Zr Cu-Zr Cu-Nb Ni-W

z 8 12 12 12

r (m2/mol) [Eq. (20)] 31 217 31 222 31 222 29 680

cA (J/m2) (Refs. 25 and 26) 0.636 0.636 0.885 1.088

cB (J/m2) (Refs. 25 and 26) 0.805 0.602 0.602 0.793

DHels (kJ/mol) [Eq. (2)] �109.3 �90.8 �40.2 �44.3

DHo
mix (kJ/mol) (Ref. 27) �25 �23 þ3 �3
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with a somewhat smaller value of DHels and a similar value

of DHo
mix compared to Fe-Zr. The trends are similar to Fig-

ure 6, but more Zr addition is needed to obtain the same level

of stabilization. Figure 7(a) indicates that 6 at. % Zr is

needed to obtain thermodynamic stabilization in the nano-

scale range at 700 �C, compared to somewhat less than 4 at.

% Zr in Figure 6(a). Grain size stabilization in the nanoscale

range in conjunction with some abnormal grain growth was

reported in Ref. 30 for Cu-1 at. % Zr annealed at 900 �C. In

this case Figure 7(a) implies an alternate grain size stabiliza-

tion mechanism, and TEM results showed the presence of

nanoscale intermetallic precipitates sufficient to produce

additional Zener pinning.30

The numerical results for the Cu-Nb system are shown

in Figure 8. Nb is a non-equilibrium solute with a signifi-

cantly smaller value of DHels and a slightly positive DHo
mix.

The former would reduce the effectiveness of thermody-

namic stabilization compared to the Fe-Zr and Cu-Zr sys-

tems whereas the latter would enhance the stabilization.

Figure 8(a) shows that at the same amount of solute addition,

Nb in Cu is less effective than Zr in Cu and both are less

effective than Zr in Fe. The experience found with our nu-

merical modeling results is that DHels is the dominant factor

for thermodynamic stabilization compared to DHo
mix. Recent

results (to be submitted for publication) obtained in our labo-

ratory demonstrated nanoscale grain size stabilization for

1 at. % Nb in Cu up to 800 �C. Figure 8(a) shows that ther-

modynamic stabilization is clearly not effective in this case,

and HRTEM confirms the presence of Nb nanoscale precipi-

tates in Cu that would be candidates for kinetic stabilization

by Zener pinning. Similarly, in the Cu-Ta system, DHels and

DH0
mix values are almost the same as the Cu-Nb system. The

numerical calculations show that 10 at. % Ta addition can

retain a value of 92 nm nanoscale grain size at 900 �C. This

FIG. 7. Model predictions of (a) grain size and (b) interfacial solute excess for Cu-Zr alloys.

FIG. 6. Model predictions of (a) grain size and (b) interfacial solute excess for Fe-Zr alloys.
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compares well to the experimental result of 111 nm, recently

reported by Frolov et al.31 However, the simulated distribu-

tion of Ta in Cu-6.5 at. % Ta alloy at high temperatures by

molecular dynamic (MD) simulations predicted that Ta

diffusion through grain boundaries leads to a distribution

of nanoclusters of Ta in the grain boundaries.31 The Ta

nanoclusters contribute to kinetic stabilization mechanisms

such as Zener pinning. This is consistent with our model

predictions indicating that at 6.5 at. % Ta addition at high

temperatures thermodynamic stabilization is not effective.

The numerical results for the Ni-W system are shown in

Figure 9. The DHels and DHo
mix values are similar to those for

Cu-Nb, but a comparison of Figures 8(a) and 9(a) shows a

significantly different trend. Thermodynamic stabilization in

the nanoscale range at 600 �C requires 5 at. % Nb in Cu com-

pared to 20 at. % W in Ni. This is in agreement with experi-

mental results obtained at high temperatures for

electrodeposited Ni-W alloys.32,33 Atom probe tomography

and atomistic simulations in Refs. 34 and 35 indicate a lack

of significant W segregation to grain boundaries, implying

that thermodynamic stabilization is not effective for Ni-W

alloys. However, this work was done using as-plated (un-

annealed samples) and is not comparable to results in Figure

9. Atom probe tomography was also reported in Ref. 36, and

in this case using annealed Ni-W alloys. W segregation on

grain boundaries was observed on nanoscale grain bounda-

ries for Ni-18 at. % W, up to about 700 �C. Above that tem-

perature, extreme grain coarsening was observed. This is in

reasonable agreement with Figure 9(a), but is somewhat bet-

ter grain size stabilization that could be a result of concurrent

kinetic mechanisms.

V. SUMMARY AND CONCLUSIONS

Based on the TS approach, a regular solution model was

developed to evaluate thermodynamic stabilization of

FIG. 8. Model predictions of (a) grain size and (b) interfacial solute excess for Cu-Nb alloys.

FIG. 9. Model predictions of (a) grain size and (b) interfacial solute excess for Ni-W alloys.
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nanocrystalline grain size in binary alloy systems where non-

equilibrium solutes segregate to grain boundaries. An impor-

tant feature of the present model is that it incorporates elastic

strain energy due to size misfit in conjunction with chemical

effects. The free energy is properly minimized with respect

to simultaneous variation in the grain boundary content and

the amount of solute distributed between bulk and grain

boundary regions. The Lagrange multiplier method provides

minimization equations that can be solved using standard nu-

merical methods, and an example solution is provided. Using

data available in the literature, numerical results were

obtained for several binary alloys systems that have been

investigated experimentally, and where thermodynamic sta-

bilization might be expected. While both strain energy and

chemical effects are possible, it appears that the former dom-

inates in strongly segregating systems. Although it is not

expected that a regular solution model can make exact pre-

dictions of the temperature and solute ranges over which

thermodynamic stabilization of nanoscale grain size can

occur, the trends are significant. There are competing kinetic

stabilization mechanisms when non-equilibrium solutes are

present. These include solute pinning or drag, and Zener pin-

ning by precipitates. The formation of the latter competes

with solute segregation to the grain boundaries and the

effects are dependent on processing time-temperature paths

and diffusion rates. In the numerical results presented here

for several alloy systems, there are cases where the model

predictions are in good agreement with experimental results

and thermodynamic stabilization is viable. In other cases,

the model predictions are not even close, but nonetheless

are useful indications that kinetic stabilization effects must

be present. A more complete understanding and exploita-

tion of the stabilization of nanoscale grain size at high tem-

peratures by solute additions must take into account both

thermodynamic and kinetic stabilization mechanisms, along

with time-temperature paths used for processing. Direct

confirmation of grain boundary segregation, using techni-

ques like atom probe tomography or high-resolution elec-

tron microscopy, has been done only in a few

investigations, but it will be essential for further identifica-

tion of the stabilization mechanisms and verification of the

stabilization models.
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